
www.manaraa.com

SOFTWARE VERIFICATION RESEARCH CENTRE

DEPARTMENT OF COMPUTER SCIENCE

THE UNIVERSITY OF QUEENSLAND

Queensland 4072
Australia

Phone: +61 7 365 1003
Fax: +61 7 365 1533

TECHNICAL REPORT

No. 95-28

Visualisation and Software Development:
Analysing the requirements

T. Jones, D. Carrington, W.Allison,
L. Stewart-Zerba, G. Watson and J. Welsh

June 1995



www.manaraa.com

Note: Most SVRC technical reports are available
via anonymous ftp, from ftp.cs.uq.edu.au in the
directory /pub/SVRC/techreports.



www.manaraa.com

Abstract

Visualisation and Software Development:
Analysing the requirements

T. Jones, D. Carrington, W. Allison,
L. Stewart-Zerba, G. Watson and J. Welsh.

Email: {tsj, davec, warwick. larry, gwat, jim}@cs.uq.oz.au

Software Verification Research Centre
Department of Computer Science

University of Queensland
Queensland, Australia 4072

May 1995

Key Words: visualisation, graph drawing requirements, software development tools.

As part of the software development process, software engineers produce
numerous documents, ranging from initial specification documents to
documents associated with implementation. Some of these documents are
diagrammatic in nature, such as traditional design documents. Others are
textual such as program source code. Textual software engineering documents,
particularly source code, contain relational structures which are most naturally
presented diagrammatically. This paper investigates the types of diagrams that
are commonly used by software engineers throughout the life of software. To
establish the requirements of such diagrams in a generic manner, a set of
review criteria was created. Our goal is to establish display requirements for
general-purpose tools that will provide software engineers with diagrammatic
views of these documents.



www.manaraa.com



www.manaraa.com

Introduction 1

1 Introduction

Diagrammatic presentations are one of the most powerful methods of human
communication. With the ever increasing power of the underlying hardware, diagrammatic
representation of information is becoming a predominant mechanism for communicating
complex ideas for a large range of software applications. This is true for tools and
environments that support software development.

Software engineers have for some time taken advantage of the power of diagrammatic
presentations through the use of various diagramming techniques during the early phases of
the software development. Such techniques are supported by a variety of Computer Aided
Software Engineering (CASE) tools [Ber93, Fug93]. However with the increasing complexity
and size of software, programmers and analysts are turning to tools that provide diagrammatic
representations of relationships that exist within and between the documents that comprise the
software they are developing [Amb89]. In this paper we identify two distinct areas in which
diagrams can be used by software engineers during development. They are: modelling
diagrams used in the early phases of software development and program visualisation.

Modelling diagrams representing program structure, control flow, and data have always
been used by programmers to record design decisions about a program. Such diagrams are
usually drawn before the program is implemented. Program visualisation tools make it
possible to generate diagrams that are similar in nature to modelling diagrams from the source
code itself, therefore providing a basis for comparingwhat isand what was meant to be.

Originally software development tools were stand alone applications. As such, the
programmers chose those tools that were most appropriate for their situation. Recently there
has been a trend to integrate software development tools into single software development
environments. Although this practice has benefits, it confines programmers to particular styles
and methodologies regardless of how applicable they are. To address this, many environments
allow configuration of some aspects by the end user. Such configuration varies from setting
previously defined options at run-time, to a more complex configuration performed before a
project is started or when the software is installed. The next generation of software
development environments will be almost completely generic in nature, allowing document
types, interaction and presentation styles, and associated tools to be specified. This paper is
based on a more extensive working paper [Jon95] that reviews the requirements for
diagrammatic presentations in generic software development environments.

To establish the diagrammatic presentation requirements in a generic manner, a set of
review criteria is described insection 2. In [Jon95], a taxonomic classification was used to
establish a selection of modelling diagrams and program visualisations, to which the review
criteria were applied. The classifications and the results from the more interesting examples
are described for modelling diagrams insection 3 and for program visualisations insection 4.



www.manaraa.com

2 Visualisation and Software Development: Analysing the requirements

2 Analysis approach

This section describes the review criteria that were applied to modelling diagrams and
program visualisations. We define four criteria:

• Graph theoretic class;
• Conformance;
• Presentation; and
• Interaction.

In the four sub-sections, each criterion is defined and a brief description is given describing its
importance to the presentation and manipulation of modelling diagrams and program
visualisations in software development environments.

2.1 Graph Theoretic Class

The first criterion is the type(s) of graph that forms the structure of the diagram. This is
important for establishing the basic requirements for any drawing package that might be used
to present such diagrams. We have chosen a subset of graph types that we feel are relevant for
this task.

A simple graph is a set ofnodes N and a set ofedges E where each edge is a pair of distinct
nodes in N. The set of simple graphs can be subdivided in several different ways.

• Directed andundirected: A simple graph is directed if every edge is an ordered pair of
distinct nodes. For an undirected graph, each edge is an unordered pair.

• Cyclic andacyclic: A path is an ordered list of nodes n1 to nk such that (n1,n2), (n2,
n3)...(nk-1, nk) ∈ E. The length of the path and the number of edges in that path are
given byk-1 and the number of nodes isk. A cycle is a path where n1 = nk and k>1. A
graph that contains a cycle is called cyclic.

• Connected anddisconnected: An undirected graph is connected iff, for every pair of
nodes in the graph, a path exists between them. A directed graph is connected if its
undirected equivalent is connected.

• Planar andnon-planar: A graph that can be drawn on a plane such that no edges cross
is said to be planar. The planarity of a graph is a key issue for its presentation.

These four attributes are used to classify graphs.

A tree is a specialised form of connected graph where if any edge is removed, the resulting
graph is disconnected. For this reason they are also known as minimally connected graphs.
Trees are always connected, acyclic and planar and may be directed or undirected.

A rooted tree is a tree with a specific node designated as its root. A rooted tree has an
implicit direction associated with its edges and hence is a directed graph. Rooted trees are
always directed, connected, acyclic and planar.

A multigraph is a generalisation of the simple graph concept to allow edges from a node to
itself and multiple edges between any pair of nodes. Multigraphs may or may not be directed,
cyclic, connected and planar.



www.manaraa.com

Analysis approach 3

A compound graph is a graph that consists of distinct sub-graphs, connected or
disconnected. This category is not drawn from graph theory but is included because of the
hybrid nature of many diagrammatic techniques used in software engineering. These distinct
sub-graphs are often connected by a sub-graph which is a tree.

2.2 Conformance

The second criterion considers the syntax and semantics that affect the layout of a graph
that are not captured in its type description. Simple graph layout mechanisms produce
diagrams based on a set of aesthetic goals only. They do not consider, nor do they have any
knowledge of, the syntax and semantics of the diagram being drawn. Regardless of the layout
approach chosen, it is necessary to provide this information so a resultingview of a diagram
conforms to the syntax and semantics of that diagram. We identify two key criteria, geometric
relations and absolute positioning.

2.2.1 Geometric Relations

Geometric relations are constraints that specify geometric relationships between nodes.
There are two type of geometric relations:

• Relative positioning; and
• Clustering.

Relative positioning constrains a node’s position in relation to another node. For example, we
may constrain a node X to be to the left/right/above/below node Y. Such constraints may be
general like those just listed, or more specific such as ‘node X must be the left neighbour of
node Y’.

Clustering groups nodes within a defined geometric region. As with individual nodes, a
cluster can have a relative positioning constraint. That is, a node or a cluster may be
geometrically constrained in relation to another node or cluster. Similarly nodes within a
cluster may also be subject to relative positioning constraints within the cluster itself.
Clustering is hierarchical in the sense that clusters and nodes may be grouped together within
a defined geometric region to form a new cluster.

2.2.2 Absolute Positioning

Absolute positioning constrains a node or cluster to a fixed position within an assumed
coordinate system. For example, a diagram, which is a rooted tree, may require the root node
be placed at the top of the diagram, centred left to right.

2.3 Presentation

The third criterion considers the presentation attributes of the visual objects in a diagram.
Presentation attributes do not contain information that affect the initial layout of the graph,



www.manaraa.com

4 Visualisation and Software Development: Analysing the requirements

rather they are the visual encoding of the information being presented in a diagrammatic form.
These attributes are either geometric or appearance attributes.

2.3.1 Geometric Attributes

Geometric attributes describe physical geometric properties of a visual object. They may
or may not require fine tuning of the layout of a diagram. Examples of geometric attributes
are:

• shape of nodes - are the nodes round, square etc.?
• size of nodes - what are the dimensions of nodes?
• type of arc - what is the shape and format of arcs?
• connection of arcs to nodes - where do arcs connect to nodes?
• annotation of nodes- how and where are nodes annotated? and
• annotation of arcs - how and where are arcs annotated?

2.3.2 Appearance Attributes

Appearance attributes describe the physical appearance of a visual object. They have no
geometric properties and as a result do not influence layout. Examples of appearance attributes
are:

• colour - what colour are nodes and arcs?
• line width - how wide are the lines that make up nodes/arcs?
• #lines - how many lines are drawn for each node/arc shape?
• filled - are nodes/arcs filled? and
• texture - what texture are nodes and arcs?

2.4 Interaction

The fourth and final criterion considers what role a view of a diagram may play in
interaction between the user and the development environment. Interaction can be considered
to belong to one of the following two classes:

• Manipulative - the view can be used to manipulate (i.e. create, cut, paste, copy etc.)
both the diagram structure, and/or the underlying document structure.

• Non-manipulative - the view can be used only to call another view, invoke a tool or
both.

Four types of visual roles are considered, views with no interaction, interactive views that
do not allow manipulation, views that allow restricted manipulation, and views that allow all
manipulation activities.
View-only views are straight diagrammatic presentations with no interactive properties. Such
views can be called and dismissed, but do not allow the user to interact with the diagram itself.
Interactive views allow the user to interact with the diagram, but do not change the document
structure directly. Interactive views allow non-manipulative interactions.



www.manaraa.com

Classification of Modelling Diagrams 5

Restricted manipulative views allow manipulative interaction in some cases and may also
allow non-manipulative interaction. Manipulation in this class may be restricted because either
the underlying diagram structure is affected by an operation that breaches an established
constraint, or the role of the view in question does not support certain manipulation. An
allowed manipulation will be reflected in both the document and diagram structures if it does
not violate an existing constraint.
Unrestricted manipulative views do not place any restriction on what manipulations are
allowed and may also allow non-manipulative interaction. A manipulation on this type of
view can change all related document and diagram structures.

3 Classification of Modelling Diagrams

In the early phases of software development, analysts and programmers use a variety of
modelling diagrams to describe the problem domain of a system, and eventually the design of
the system itself. Over the years, a large number of such diagrams have evolved, each with a
diverse set of notations and presentation styles. For this reason, we only review a subset of
such diagrams in this paper. To select an appropriate subset, we consider a classification of
modelling diagrams.

3.1 A Classification of Modelling Diagrams

Modelling diagrams are used in software engineering at several levels. Rock-Evans and
Engelien [Roc89] provide a taxonomy of modelling diagrams at the analysis level. Martin and
McClure [Mar85] define a taxonomy for both analysis and design. The modelling diagrams
described in these texts are similar despite the modelling level at which they are used. Both
taxonomies differentiate between diagrams on the basis of the software engineering issues that
they address. Both identify the need to model data and activities or functions separately. Other
common modelling techniques are techniques for modelling the detailed logic of a program
and techniques for modelling the changes in a system’s state.

We have identified four categories of modelling techniques which play an important role in
analysis and design. They are data modelling, activity modelling, program logic modelling
and state-transition modelling. These four modelling techniques tackle important issues
present in software development.

For each of the categories, it was appropriate to define a sub-classification. The sub-
classifications reflect the purpose and detail of the models. Data modelling diagrams include
analytical diagrams, design and object-oriented diagrams. Activity-modelling diagrams
include data-flow diagrams, activity-decomposition diagrams and activity-dependency
diagrams. State-transition modelling diagrams include simple state diagrams and state-charts.
Program logic diagrams include those drawn with only lines, only boxes, and boxes and lines.



www.manaraa.com

6 Visualisation and Software Development: Analysing the requirements

3.2 Analysis

To illustrate how the review was conducted, this section describes the extent of the review
of modelling diagrams, provides an example of how the review criteria were applied to each
diagram reviewed, and summarises the results of the full review.

3.2.1 Extent of the survey

Data modelling is performed at two different levels during software development. Firstly,
analytic modelling is concerned with describing relationships between real world objects/
entities. Secondly,design-oriented modelling is concerned with describing how data is
structured in the implementation of the program. A recent modelling technique, known as
object modelling provides a smooth join between these two phases. When considering analytic
modelling, we reviewed Entity-Relationship (ER) diagrams [Che76, Elm89]. When
considering design-oriented modelling we reviewed Jackson data diagrams [Jac83]. When
considering object modelling, we reviewed the Object Modelling Technique’s (OMT)
[Rum91] object diagrams.

Activity modelling explores the relationships within and between activities. By classifying
activity modelling diagrams by the type of information they convey, it is possible to identify
classes of activity modelling diagrams.Data-flow diagrams (DFDs) [DeM79] model the
transition of data between activities.Activity-decomposition diagrams such as structure charts
[Ken88] model the hierarchical breakdown of activities in more and more detail.Activity-
dependency diagrams model logical ordering of activities based on the requirements of each
activity to proceed.

State diagrams convey temporal information about a system. Simple state-transition
diagrams only describe states and events. State charts [Har87] are normally used to model
systems with complex temporal constraints. We reviewed OMTs state diagrams as an example
of state charts.

Program logic diagrams model flow of control and the conceptual structure of algorithms
at a level closely related to implementation. Many varieties of program logic diagrams exist,
all of which represent basically the same information with different presentation styles. Based
on presentation style, three classes can be identified: those containing only lines, those
containing only boxes, and those containing both boxes and lines [Tri88]. When considering
line only diagrams, we reviewed Structure Program Diagrams (SPDs) [Aoy89]. When
considering box only diagrams, we reviewed Nassi-Shneiderman diagrams [Nas73]. When
considering box and line diagrams, we reviewed flow charts.



www.manaraa.com

Classification of Modelling Diagrams 7

3.2.2 Method

Our example applies the review criteria to data-flow diagrams.

Data-flow diagrams are unconnected compound graphs. Each decomposition is a directed
multigraph that may or may not be planar and/or cyclic depending on the design created by the
user. The collection of decompositions form a rooted tree.

A single data-flow diagram is a decomposition of some activity. All nodes that participate
in the decomposition are clustered together within a box which is annotated in the top-right
corner to indicate the activity that is being decomposed.

Data-flow diagrams contain three primary types of node: sources and sinks which are
rectangles, activities which are circles, and data stores which are two parallel lines. There are
two special activity nodes, one is hashed, representing an activity outside the current
decomposition and one is double lined, indicating an activity outside the scope of the analysis.
Labels in nodes are centred. To conform to our definitions of graph types, it is necessary to
define a fourth type of node which is placed at each split and join on a data-flow. Such a node
has no visual representation.

The direction of a data-flow is given by an arrow on the edge. Data-flows may be
bidirectional in which case only one arc is drawn with two arrows, one for each direction. In
all cases, arrows are placed on data-flows at the point where they connect to the node to which
the flow is directed.

The rooted tree that forms the collection of decompositions is not usually represented,
however if it was, it would provide an idealinteractive view for navigation between
decompositions, or simply act as aview-only reference map.

Activity

Data Store
Source
/ Sink

Activity

Activity

Data
flow

Activity being decomposed

Activity

Figure 1.Components of DFDs



www.manaraa.com

8 Visualisation and Software Development: Analysing the requirements

3.2.3 Results

A summary of applying the graph theoretic class criteria to modelling diagrams is intable
1. For each diagram reviewed, the table highlights the graph type(s) found and describes their
attributes indicating whether they are: directed, cyclic, connected, and/or planar. For
compound graphs, a description of which part forms the sub-graph is given.

Due to the complex notations used in most modelling diagrams, the resulting graph types
are quite complex. The results of this survey indicate that several of the diagrams are
compound graphs consisting of sub-graphs which are rooted trees. Some of the diagrams are
directed graphs and some are undirected graphs, and all except for DFDs are connected
graphs. Diagrams whose graphs are not rooted trees have graphs for which planarity can not
be guaranteed. Except for state transition diagrams, all diagrams whose graphs are not rooted
trees, are possibly cyclic. In addition to the graph types defined insection 2.1, it was found
that software development environments need to support the presentation of other
representations such as tables.

Table 1: Graph theoretic classes for modelling diagrams

Graph Type
Compound graph

description
Directed

Must be
Acyclic

Must be
Connected

Must be
Planar

ER / EER diagrams Simple graph

Rooted tree Generalization and
categorisation hierarchies

No

Yes

No

Yes

Yes

Yes

No

Yes

Jackson data diagrams Rooted tree N/A Yes Yes Yes Yes

OMT object diagrams Multigraph

Rooted tree Generalization and
aggregation hierarchies

No

Yes

No

Yes

Yes

Yes

No

Yes

Data-flow diagrams Multigraph

Rooted tree Decomposition sequences

Yes

Yes

No

Yes

No

Yes

No

Yes

Structure charts Simple graph N/A Yes Yes Yes No

SPDs Rooted tree N/A Yes Yes Yes Yes

Nassi-Shneiderman dia-
gram

Rooted tree N/A Yes Yes Yes Yes

Flow charts Simple graph N/A Yes No Yes No

State-transition diagrams Multigraph N/A Yes No Yes No

State tables Table N/A

State charts Multigraph

Rooted tree Generalization hierarchies

Yes

Yes

No

Yes

Yes

Yes

No

Yes



www.manaraa.com

Classification of Modelling Diagrams 9

A summary of applying the conformance criteria to modelling diagrams is intable 2. For
each appropriate diagram reviewed, the necessity for absolute positioning, relative positioning
and clustering is given. Except for ER diagrams and state transition diagrams, all diagrams
require support for one or more of the conformance constraints. For ER diagrams, it was found
that relative positioning and clustering is desirable to convey the intentions of the author. No
conformance constraints was found to be necessary for state transition diagrams. There is no
consistent correlation between graph types and the necessity of the three constraints.

Modelling diagrams were widely used before there were tools to automate their
development. As a result, use of appearance attributes such as colour, texture and line width
was not feasible. Thus geometric attributes dominated as the mechanism for distinguishing
concepts. As automated tools became available, diagrams started to incorporate simple
appearance attributes such as line width, however, technology limited the application of more
visually complex attributes such as colour and texture. The results of the survey are consistent
with this. It was found that there is limited use of appearance attributes, which is compensated
for by use of a large variety of geometric attributes.

Modelling diagrams are user-generated, and are often informal in nature. As a result, they
have limited semantic connection to other documents in the system. Thus, constraints on
manipulation of such diagrams are only dependent on the semantics and interrelationships of a
single type of diagram. However, if a uniform paradigm is used during modelling, consistency
is an issue. For example, activities identified in the activity modelling phase should be
included in the data model if an object-oriented approach is chosen. Equally, activities referred
to in a state-chart should exist in the set of activity models. Such consistency issues may
restrict the manipulation of a document [Wel94] depending on the consistency strategy
chosen. Navigation between diagrams is dependent on relationships between diagrams, which

Table 2: Conformance criteria for modelling diagrams

Absolute positioning Relative positioning Clustering

ER / EER diagrams - Desirable Desirable

Jackson data diagrams Required Required -

OMT object diagrams - Required Desirable

Data-flow diagrams - - Required

Structure charts Required Required -

Structured program diagrams Required Required -

Nassi-Shneiderman diagrams - Required -

Flow charts Required Required -

State-transition diagrams - - -

State charts - - Required



www.manaraa.com

10 Visualisation and Software Development: Analysing the requirements

are defined by the development paradigm being used. Navigation within diagrams is enhanced
by mechanisms that provide opportunities to navigate through various sub-diagrams, such as
decomposition levels in data-flow diagrams.

4 Program Visualisation

Program visualisation is the process of visually enhancing some aspects of either a
program’s source code or its execution. Baeker [Bae86] defines program visualisation as “the
use of the technology of interactive computer graphics and the crafts of graphic design,
typography, animation and cinematography to enhance the presentation and understanding of
computer programs”. This definition provides that such presentations may be static or
animated [Bro88]. However, this review only considers static representations. As with
modelling diagrams, a large variety of program visualisations may be used. To select an
appropriate subset, we consider a classification of program visualisations.

4.1 Classification of Program Visualisation Views

Program visualisation is a relatively young field which attracted significant interest in the
late 1980’s. No widely accepted visual conventions exist. Existing systems that provide
visually enhanced representations of programs all differ in the visualisations they provide, the
notations used in the visualisations and the emphasis placed on the visualisation within the
overall system.

Several taxonomies of program visualisation have been proposed by various authors, but
all are associated with papers that address issues that are not considered in this paper. An early
review of visual programming techniques by Raeder [Rae85] describes four classifications for
diagrams representing programs:

• control-flow;
• data-flow;
• data-structure; and
• program structure.

He further notes the need for visually representing debugging information, performance
information and information about entity types and the importance of preserving the
abstraction mechanisms naturally found in programming languages.

Myers [Mye86, Mye90] and Roman and Cox [Rom92, Rom93] provide two variations of a
taxonomy for the purpose of reviewing program visualisation systems. Myers’ taxonomy is
the simplest. He describes two criteria: aspect and display style. The aspect criterion indicates
which aspect of a program a visualisation illustrates. An aspect may be one of the following:

• code;
• data; or
• algorithm.



www.manaraa.com

Program Visualisation 11

Each of these aspects is then described by a display style which is either static or dynamic.
Roman and Cox provide a more complex taxonomy that considers five criteria: scope;
abstraction; specification method; interface; and presentation. Scope is similar to Myers’
aspect criterion; it considers which aspect of a program is to be visualised. Scope may be a
program’s:

• code;
• data-state;
• control-state; or
• behaviour.

The abstraction criterion considers the level of abstraction of the information contained in a
visualisation. Roman and Cox define three levels of abstraction as follows:

• direct representation;
• structural representation; and
• synthesised representation.

The specification, interface and presentation criteria are directed towards classification of
systems, not diagrams so we do not describe them. It should be noted that this taxonomy is
generally biased towards systems that provide dynamic views.

Shu [Shu85, Shu88] provides a categorisation of visual programming which includes
visual environments that provide program views. This categorisation is not relevant to this
paper as it is too broad in scope, but it is worth noting that he makes a distinction between a
program’s source code and its execution.

None of the taxonomies described above provide a classification suitable for the discussion
of the presentation of program visualisations within the framework of the review criteria
described insection 2. As previously mentioned, in this review we are only interested in static
representations of a program and/or its execution. Within this restriction we define a
classification scheme which is used insection 4.2. The primary classification of program
visualisations is based on the source of the visualisation. That is, a visualisation is either
derived from a program’s:

• source code; or
• its execution

Visualisations derived from a program’s source code are referred to as program abstraction
and browsing visualisations. Visualisations derived from the execution of a program are
referred to as program execution visualisations.

4.2 Analysis

This section describes the extent of the review of program visualisations, and summarises
the results of the review.



www.manaraa.com

12 Visualisation and Software Development: Analysing the requirements

4.2.1 Extent of the survey

Program abstraction and browsing visualisations allow the programmer to peruse a
program in a manner that is closely related to the way a human conceptualises a program.
They allow a programmer to visualise complex relations within a large system, enhancing both
a programmer’s comprehension of a program and increasing a programmer’s efficiency during
difficult and time-consuming tasks such as program maintenance. Four classes of program
abstraction and browsing visualisations were identified: source code visualisations, program
dependency visualisations, program logic and control flow visualisations, and static metric
visualisations. Source code visualisations are inherently textual and as a result were not
reviewed.

Program dependencies are relationships between a set of program elements that are
dependent either syntactically or semantically on another set of program elements. The review
of program dependencies was limited to those found in conventional imperative programming
languages. When considering such languages, we identify four classes of program
dependencies, where each class contains elements of the previously listed classes. The classes
are:

• data-type dependencies;
• data-item dependencies;
• procedure/function dependencies; and
• module dependencies.

Only the first, third and fourth of these classes are associated with interesting and desirable
visualisations. The second class, data-item dependencies, form complex graphs which are
useful for establishing program slices [Wei81] and performing ripple effect analysis [Yau84].

Program logic diagrams were reviewed as a mechanism of modelling algorithms in terms
of their control flow. This notion is equally applicable to presenting the final program. We did
not review the diagrammatic requirements again as they do not differ from the previous
description.

Static metrics provide useful measures of software quality and evolution. Visual
representations can be used to contrast changes in functions, modules and the system as a
whole, over time. Such visual representations are examples of statistical graphs, such as Kiviat
diagrams, bar graphs, pie charts, and line graphs.

Program execution visualisations allow the programmer to visualise information
concerning the run-time behaviour and performance of a program. Among other things, this
type of visualisation can be used as an aid in: locating and resolving run-time errors;
optimising program source code and assessing test coverage.

We reviewed diagrams from four types of program execution visualisations: data-content
visualisations, execution performance visualisations, coverage visualisations and execution
stack visualisations. These are not the only diagrams a programmer may desire, but they
illustrate how information generated by debugging and performance evaluation tools can be



www.manaraa.com

Program Visualisation 13

presented, and are representative in scope and nature of program execution visualisations in
general.

4.2.2 Results

A summary of applying the graph theoretic class to program visualisations is intable 3.
The information is presented in the same way that it was for modelling diagrams. Not all
views form graph types defined insection 2.1. Static metric visualisations form more
traditional presentations which should also be supported. For data content visualisations, it is
not possible to determine what type of graph will be produced until run-time. None of the
visualisations reviewed are compound graphs. For the appropriate visualisation types, all
graphs are directed, and possibly cyclic. Some are possibly unconnected and those which are
not rooted trees are possibly non-planar. It should be noted that as program visualisation
becomes more widely used, new notations will evolve which may constitute more complex
graph types.

A summary of applying the conformance criteria to program visualisations is intable 4.
The information in this table is presented in the same way that it was for modelling diagrams.
Conformance constraints were found to be very important in the presentation of program

Table 3: Graph theoretic classes for program visualisation views

Graph Type
Compound graph

description
Directed

Must be
Acyclic

Must be
Connected

Must be
Planar

Source code views No graphical view

Data type dependencies Rooted tree N/A Yes No Yes Yes

Data item dependencies Same as those for base view on which the additional information is included

Procedure / function
dependencies - Call graph

Multigraph N/A Yes No No No

Module dependencies Multigraph N/A Yes No No No

Program logic and
Control flow views

Same as either flow charts, Nassi-Shneiderman diagrams or Structured program diagrams depending on
the representation chosen

Static metric views Bar graphs,
Pie charts,
line graphs

etc.

N/A

Data contents views All N/A Yes No No No

Execution performance
views

Same as those for base view on which the additional information is included
Coverage views

Execution stack views

Abstract syntax tree Rooted tree N/A Yes No Yes Yes



www.manaraa.com

14 Visualisation and Software Development: Analysing the requirements

visualisations. All of the applicable visualisations required at least one constraint, and for all it
is, at a minimum, desirable to exercise at least two constraints. Again there is no consistent
correlation between graph type and conformance criteria.

As previously mentioned, program visualisation is a relatively young field. As such, it has
been able to benefit from recent technological advances in hardware and software. This has
resulted in the use of a large range of appearance attributes such as colour, texture and line
width. It was found that although geometric attributes played an important role in
differentiating information, appearance attributes are the dominant mechanism. As technology
progresses, we expect that this trend will continue.

Program visualisations are generated from concrete information, that is a program’s source
code or its execution. As a result, manipulation of elements in a visualization have strong
semantic and syntactic consequences for the underlying source code. For example, if a node is
added to a call graph, an appropriate declaration of the function/procedure can be made in the
source code. However, if an edge is added to reflect a call to one procedure/function from
another, there is a problem reflecting this change in the source code. The problem is that there
is no predetermined position in the calling function/procedure to add the code for the call.
Finally, the relationships within and between program visualisations, provide excellent means
for navigation within and between these visualisations and also to the source code.

5 Further Work

Software documents are generally inter-related in some way. For example, parts of
specification, analysis and design documents may be related to parts of the program source
code or to parts of each other. Examples of such relationships are described by Welsh and Han
in [Wel94]. The number and complexity of such relationships will generally be dependent on
the software development paradigm that is employed. Further work is required to establish the
relationships that should be represented, and define how they are best presented
diagrammatically. Finally, these diagrams should be reviewed, allowing their requirements to
be incorporated into a generic software development environment.

Table 4: Conformance criteria for program visualisation views

Absolute positioning Relative positioning Clustering

Data type dependencies Required Required -

Procedure / function
dependencies - Call graph

Required Desirable Desirable

Module dependencies - Desirable Required

Data contents views Dependent on graph type

Abstract syntax tree Required Required -



www.manaraa.com

Conclusions 15

6 Conclusions

In this paper we have described the results of reviewing a representative set of diagrams
that may be used during software development. This review aimed at providing the
requirements for presentation of such diagrams in a generic software development
environment. A taxonomic classification was presented which was used to establish the set of
review diagrams.

The survey found a diverse range of graph types in the diagrams reviewed as well as other
visual presentation styles, and extensive use of conformance constraints. This indicates that a
generic software development environment must provide a wide range of layout facilities, for
both diagrams, tables and other appropriate visual representations. In general, modelling
diagrams relied on geometric attributes to communicate information, while program
visualisations had the potential to utilize both geometric and presentation attributes. As a
result, a wide range in presentation attributes was found, indicating that generic environments
must be flexible in the definition and use of such attributes. Interaction with diagrams should
incorporate a range of navigational facilities, both within and between diagrams. Finally, it
was shown that manipulation of most diagrams is constrained by either the semantics of the
diagram, or its relationships to other documents. To support this, generic software
development environments must provide flexible mechanisms for defining allowable
interactions for each type of visual representation that it is capable of presenting.

7 Acknowledgements

This work was conducted in association with the Graphical Presentation and Manipulation
project, which is supported by a research grant from the Australian Research Council. The
principal researchers are Prof. Jim Welsh and Dr. David Carrington both at The University of
Queensland, and Prof. Peter Eades at The University of Newcastle.

References

[Amb89] Ambler A. L., Burnett M. M. Influence of visual technology on the evolution of
language environments.IEEE Computer, 22(10):9–22, October 1989.

[Aoy89] Aoyama M., Miyamoto K., Murakami N., Nagano H., Oki Y. Design specifica-
tion in Japan: Tree-structured charts.IEEE Software, pages 31–7, March 1989.

[Bae86] Baecker R. M. An applications overview of program visualization.Computer
Graphics, 20(4):325, August 1986.

[Ber93] Bergin T. J.Computer-aided software engineering: Issues and trends for the
1990s and beyond. Idea Group Publishing, Harrisburg, Paris, 1993.

[Bro88] Brown M. H. Perspectives on algorithm animation. InProceedings, CHI ’88:Hu-
man Factors in Computing Systems, pages 33–8. ACM Press, 1988.



www.manaraa.com

16 Visualisation and Software Development: Analysing the requirements

[Che76] Chen P. The entity relationship model – toward a unified view of data.ACM
Transactions on Database Systems, pages 9–36, March 1976.

[DeM79] DeMarco T.Structured Analysis and System Specification. Prentice-Hall, Engle-
wood Cliffs, N.J., 1979.

[Elm89] Elmasri R., Navath S.B.Fundamentals of database systems. Addison-Wesley
world student series. Benjamin/Cummings Publishing Company, Redwood City,
California, 1989.

[Fug93] Fuggetta A. A classification of case technology.IEEE Computer, 26(12):25–38,
December 1993.

[Har87] Harel D. Statecharts: A visual formalism for complex systems.Science of Com-
puting, 8(3):231–74, 1987.

[Jac83] Jackson M. A.System Development. Prentice Hall, Inc., Englewood Cliffs, 1983.

[Jon95] Jones T. Diagrammatic presentation of software documents. Technical Report
SVRC TR95-6, The University of Queensland, St. Lucia, Queensland 4072, Feb-
ruary 1995.

[Ken88] Kendall K. E., Kendall J. E.Systems analysis and design. Prentice-Hall Interna-
tional, Englewood Cliffs, N.J., 1988.

[Mar85] Martin J., McClure C.Diagramming techniques for analysts and programmers.
Prentice-Hall International, Englewood Cliffs, New Jersey, 1985.

[Mye86] Myers B. A. Visual programming, programming by example, and program visu-
alization: A taxonomy. InConference Proceedings, CHI ’86: Human Factors in
Computing Systems, pages 59–66. ACM Press, 1986.

[Mye90] Myers B. A. Taxonomies of visual programming and program visualization.
Journal of Visual Languages and Computing, 1(1):97–123, March 1990.

[Nas73] Nassi I., Shneiderman B. Flowchart techniques for structured programming.SIG-
PLAN Notices, 8(8), August 1973.

[Rae85] Raeder G. A survey of current graphical programming techniques.Computer,
18(8):11–25, August 1985.

[Roc89] Rock-Evans R., Engelien B.Analysis techniques for CASE: A detailed evalua-
tion, volume 1. Ovum, London, England, 1989.

[Rom92] Roman G., Cox K. C. Program visualization: The art of mapping programs to pic-
tures. InProceedings of the Fourteenth International Conference on Software
Engineering, pages 412–20, Melbourne, Australia, May 1992. ACM Press.

[Rom93] Roman G., Cox K. C. A taxonomy of program visualization systems.IEEE Com-
puter, 26(12):11–24, December 1993.

[Rum91] Rumbaugh J., Blaha M., Premerlani W., Eddy F., Lorensen W.Object-oriented
modelling and design. Prentice Hall, Englewood Cliffs, N.J., 1991.



www.manaraa.com

Acknowledgements 17

[Shu85] Shu N. C. Visual programming languages: A perspective and a dimensional anal-
ysis. InInternational Symposium on New Directions in Computing, pages 326–
334, Trondheim, Norway, August 1985. IEEE Computer Society.

[Shu88] Shu N. C.Visual Programming. Van Nostrand Reinhold, New York, New York,
1988.

[Tri88] Tripp L. L. A survey of graphical notations for program design–An update.ACM
SIGSOFT Software Engineering Notes, 13(4):39–44, 1988.

[Wei81] Weiser M. Program slicing. InProceedings of the 5th International Conference
on Software Engineering, pages 439–49, San Diega, California, March 1981.
IEEE Computer Society.

[Wel94] Welsh J., Han J. Software documents: Concepts and tools.Software–Concepts
and Tools, 15(1):12–25, January 1994.

[Yau84] Yau S. S. Methodology for software maintenance. Technical Report RADT-TR-
83-262, Rome Air Development Centre, Griffis Air Force Base N. Y., February
1984.


